Using Context Information for Dialog Act Classification in DNN Framework

نویسندگان

  • Yang Liu
  • Kun Han
  • Zhao Tan
  • Yun Lei
چکیده

Previous work on dialog act (DA) classification has investigated different methods, such as hidden Markov models, maximum entropy, conditional random fields, graphical models, and support vector machines. A few recent studies explored using deep learning neural networks for DA classification, however, it is not clear yet what is the best method for using dialog context or DA sequential information, and how much gain it brings. This paper proposes several ways of using context information for DA classification, all in the deep learning framework. The baseline system classifies each utterance using the convolutional neural networks (CNN). Our proposed methods include using hierarchical models (recurrent neural networks (RNN) or CNN) for DA sequence tagging where the bottom layer takes the sentence CNN representation as input, concatenating predictions from the previous utterances with the CNN vector for classification, and performing sequence decoding based on the predictions from the sentence CNN model. We conduct thorough experiments and comparisons on the Switchboard corpus, demonstrate that incorporating context information significantly improves DA classification, and show that we achieve new state-of-the-art performance for this task.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Neural-based Context Representation Learning for Dialog Act Classification

We explore context representation learning methods in neural-based models for dialog act classification. We propose and compare extensively different methods which combine recurrent neural network architectures and attention mechanisms (AMs) at different context levels. Our experimental results on two benchmark datasets show consistent improvements compared to the models without contextual info...

متن کامل

Dialog Act Classification Using N-Gram Algorithms

Speech act classification remains one of the challenges in natural language processing. This paper evaluates a classification system that assigns one of twelve dialog acts to an utterance from the Map Task Corpus. The dialog act classification system chooses a dialog act based on n-grams from a training set. The system’s performance is comparable to other classification systems, like those usin...

متن کامل

Improving Phoneme Sequence Recognition using Phoneme Duration Information in DNN-HSMM

Improving phoneme recognition has attracted the attention of many researchers due to its applications in various fields of speech processing. Recent research achievements show that using deep neural network (DNN) in speech recognition systems significantly improves the performance of these systems. There are two phases in DNN-based phoneme recognition systems including training and testing. Mos...

متن کامل

Training a prosody-based dialog act tagger from unlabeled data

Dialog act tagging is an important step toward speech understanding, yet training such taggers usually requires large amounts of data labeled by linguistic experts. Here we investigate the use of unlabeled data for training HMM-based dialog act taggers. Three techniques are shown to be effective for bootstrapping a tagger from very small amounts of labeled data: iterative relabeling and retrain...

متن کامل

On the Use of Gaussian Mixture Model Framework to Improve Speaker Adaptation of Deep Neural Network Acoustic Models

In this paper we investigate the Gaussian Mixture Model (GMM) framework for adaptation of context-dependent deep neural network HMM (CD-DNN-HMM) acoustic models. In the previous work an initial attempt was introduced for efficient transfer of adaptation algorithms from the GMM framework to DNN models. In this work we present an extension, further detailed exploration and analysis of the method ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017